Error ellipses
In order to graphically convey error corellation in the isotope data, error ellipses must be constructed from measured coordinates in isotope ratio space, the measurement error on each isotope ratio, and the associated error corellation. This code calculates the proper coordinates for the error ellipse (default 95% confidence interval). In addition, there is a function to calculate the ‘best fit’ distance to a fitted isochron, to evaluate the misfit of each data point.
Get coordinates for error ellipses, based on coordinates x-error, y-error (1 sigma) and error correllation, and scaling factor (defaults to 95% confidence).
%matplotlib inline
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
Calculate major and minor axes and inclination of ellipse. returns x_size, y_size, theta.
def calc_ellipse_params(x_err, y_err, rho, scale=2.4477):
xy_err = rho * x_err * y_err
covmat = np.matrix([[x_err**2,xy_err],
[xy_err, y_err**2]])
eig = np.linalg.eigvals(covmat)
theta = 1/2 * math.atan((2*xy_err)/(x_err**2-y_err**2))
x_size = eig[0]**0.5 * scale
y_size = eig[1]**0.5 * scale
if x_err >= y_err:
theta = -theta
return (x_size, y_size, theta)
def ellipse_formula(x,y,a,b,theta):
x_t = lambda t: x + a*math.cos(t)*math.cos(theta) - b*math.sin(t)*math.sin(theta)
y_t = lambda t: y + b*math.sin(t)*math.cos(theta) - a*math.cos(t)*math.sin(theta)
return lambda t:[x_t(t), y_t(t)]
def ellipse(x,y,a,b,theta, num_pts=200):
form = ellipse_formula(x,y,a,b,theta)
return np.array([form(t) for t in np.linspace(0,2*math.pi- 2*math.pi/num_pts, num=num_pts)])
Ellipse formula generator, similar to error ellipse, but returns a function taking an angle (positive rotation direction) in degrees and returns the edge coordinate in that direction.
def error_ellipse_formula(x, y, x_err, y_err, rho, scale=2.4477):
x_size, y_size, theta = calc_ellipse_params(x_err, y_err, rho, scale)
return ellipse_formula(x,y,x_size,y_size,theta)
Takes data coordinates, 1 sigma errors, error correllation factor, scale (95% conf default (2.4477), and number of edge points). returns a coordinate matrix for for the error ellipse edges for each datapoint, in data coordinates. This can be used for creating matplotlib patches.
def error_ellipse(x, y, x_err, y_err, rho, scale=2.4477, num_points = 200):
x_size, y_size, theta = calc_ellipse_params(x_err, y_err, rho, scale)
return ellipse(x,y,x_size,y_size,theta,num_points)
Example use
fig, ax = plt.subplots(dpi=150)
rng = np.random.RandomState(1129412)
for i in range(1,10):
x, y = i/10 + (rng.rand()-0.5)/10, i/10+(rng.rand()-0.5)/10
x_err, y_err = 0.01+rng.rand()/50, 0.01+rng.rand()/50
rho = 0.7*rng.rand() + 0.2
e_coords = error_ellipse(x, y, x_err, y_err, rho)
e = mpl.patches.Polygon(e_coords, fc='none', ec='k', lw=0.5, joinstyle='round')
ax.add_patch(e)
ax.set_aspect('equal')
plt.savefig('output_12_0.png');
Measuiring misfit
In order to evaluate a regression fit, we calculate the ‘best fit’ distance, defined as the shortest distance from an analysis point, in relation to the error ellipse size. This corresponds to the distance between the ellipse center and the first point on the line the ellipse touches under scaling.
fig, ax = plt.subplots(dpi=150)
pts = [
#x, y, x_err, y_err, rho, scale
[0.5, 0.3, 0.04, 0.06, 0.5, 0.5],
[0.5, 0.3, 0.04, 0.06, 0.5, 1.8],
[0.5, 0.3, 0.04, 0.06, 0.5, 3.6],
[0.5, 0.3, 0.04, 0.06, 0.5, 6],
]
for pt in pts:
e_coords = error_ellipse(*pt)
e = mpl.patches.Polygon(e_coords, joinstyle='round', ls=':', fc='none', ec='C3', lw=1)
ax.add_patch(e)
ax.plot([0.1,0.9], [0.2, 0.7]);
ax.annotate('', xy=(0.5,0.3), xytext=(0.59,0.51), xycoords='data', arrowprops={'arrowstyle': '|-|'})
ax.annotate('Best fit\ndistance', xy=(0.56,0.3), xycoords='data', fontsize=12)
ax.annotate('Regression line', xy=(0.17,0.3), c='k', xycoords='data', rotation =31, fontsize=12);
ax.set_aspect('equal')
plt.savefig('output_14_0.png');
def get_bestfitdist(x, y, x_err, y_err, rho, fit):
shift_vec = np.matrix([[0,fit.y0]])
l0 = np.matrix([[1,fit.alpha]])
coords = np.array([[x,y]]) - shift_vec
a, b, theta = calc_ellipse_params(
x_err, y_err, rho)
ellipse_form = ellipse_formula(
x,y,a,b,theta)
scale_mx_1 = np.matrix([[1,0],[0,b/a]])
scale_mx_2 = np.matrix([[1,0],[0,a/b]])
rot_mx = lambda t: np.matrix([[np.cos(t), - np.sin(t)],
[np.sin(t), np.cos(t)]])
c_pp = (coords@ rot_mx(theta) @scale_mx_1).T
l0_pp = (l0@ rot_mx(theta) @scale_mx_1).T
l0_alpha = l0_pp[1,0]/l0_pp[0,0]
n_pp = np.matrix([[-l0_pp[1,0],l0_pp[0,0]]]).T
n_alpha = n_pp[1,0]/n_pp[0,0]
n_0 = c_pp[1,0] - c_pp[0,0]*n_alpha
x_intercept = n_0 / (l0_alpha-n_alpha)
c_adj_pp = np.matrix([[x_intercept,l0_alpha*x_intercept]])
n = ((n_pp.T * scale_mx_2) * rot_mx(-theta)) + shift_vec
n = n/np.linalg.norm(n)
c = ((c_pp.T * scale_mx_2) * rot_mx(-theta)) + shift_vec
c_adj = ((c_adj_pp * scale_mx_2) * rot_mx(-theta)) + shift_vec
theta_n = np.arccos(n[0,0])
ell_coords = ellipse_form(theta_n)
dir_95_conf = np.linalg.norm(np.array(c)[0]- np.array(ell_coords))
misfit = np.linalg.norm(c-c_adj) * (1 if c[0,0] >= c_adj[0,0] else -1)
return (c_adj, misfit, n, theta_n, dir_95_conf)